skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Ji Hyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Abstract While it has been known for some time that reducing fluids have bleached red beds adjacent to fault zones and regionally across the Colorado Plateau, the volumes of fluids expelled along faults have never been quantified. We have developed and applied a suite of one-dimensional hydrologic models to test the hypothesis that internally generated, reducing fluids migrated up sub-basin bounding faults across the Paradox Basin and bleached overlying red beds. The internal fluid driving mechanisms included are mechanical compaction, petroleum and natural gas generation, aquathermal expansion of water, and clay dewatering. The model was calibrated using pressure, temperature, porosity, permeability, and vitrinite reflectance data. Model results indicate that sediment compaction was the most important pressure generation mechanism, producing the majority of internal fluids sourced during basin evolution. Peak fluid migration occurred during the Pennsylvanian–Permian (325–300 Ma) and Cretaceous (95–65 Ma) periods, the latter being concurrent with simulated peak oil/gas generation (87–74 Ma), which likely played a role in the bleaching of red beds. Batch geochemical advection models and mass balance calculations were utilized to estimate the volume of bleaching in an idealized reservoir having a thickness (~100 m) and porosity (0.2) corresponding to bleached reservoirs observed in the Paradox Basin. Bleaching volume calculations show that internal fluid driving mechanisms were likely responsible for fault-related alteration observed within the Wingate, Morrison, and Navajo Formations in four localities across the Paradox Basin in the Colorado Plateau, Utah and Colorado, USA. The volume calculation required that 33%–55% of the total basinal fluids, composed of hydrogen-sulfide and paleo-seawater, migrated into an overlying red bed reservoir (0.5 wt% Fe2O3). 
    more » « less
    Free, publicly-accessible full text available January 30, 2026
  3. Abstract Groundwater is one of the largest reservoirs of water on Earth but has relatively small fluxes compared to its volume. This behavior is exaggerated at depths below 500 m, where the majority of groundwater exists and where residence times of millions to even a billion years have been documented. However, the extent of interactions between deep groundwater (>500 m) and the rest of the terrestrial water cycle at a global scale are unclear because of challenges in detecting their contributions to streamflow. Here, we use a chloride mass balance approach to quantify the contribution of deep groundwater to global streamflow. Deep groundwater likely contributes <0.1% to global streamflow and is only weakly and sporadically connected to the rest of the water cycle on geological timescales. Despite this weak connection to streamflow, we found that deep groundwaters are important to the global chloride cycle, providing ~7% of the flux of chloride to the ocean. 
    more » « less
  4. Abstract We report on low resistivity (1.1 Ω cm) in p-type bulk doping of N-polar GaN grown by metalorganic chemical vapor deposition. High nitrogen chemical potential growth, facilitated by high process supersaturation, was instrumental in reducing the incorporation of compensating oxygen as well as nitrogen-vacancy-related point defects. This was confirmed by photoluminescence studies and temperature-dependent Hall effect measurements. The suppressed compensation led to an order of magnitude improvement in p-type conductivity with the room-temperature hole concentration and mobility measuring 6 × 10 17 cm −3 and 9 cm 2 V −1 s −1 , respectively. These results are paramount in the pathway towards N-polar GaN power and optoelectronic devices. 
    more » « less
  5. A two-band transport model is proposed to explain electrical conduction in graded aluminum gallium nitride layers, where the free hole conduction in the valence band is favored at high temperatures and hopping conduction in the impurity band dominates at low temperatures. The model simultaneously explains the significantly lowered activation energy for p-type conduction (∼10 meV), a nearly constant sheet conductivity at lower temperatures (200–330 K), and the anomalous reversal of the Hall coefficient caused by the negative sign of the Hall scattering factor in the hopping conduction process. A comparison between the uniform and graded samples suggests that compositional grading significantly enhances the probability of phonon-assisted hopping transitions between the Mg atoms. 
    more » « less
  6. The Paradox Basin in the Colorado Plateau (USA) has some of the most iconic records of paleofluid flow, including sandstone bleaching and ore mineralization, and hydrocarbon, CO2, and He reservoirs, yet the sources of fluids responsible for these extensive fluid-rock reactions are highly debated. This study, for the first time, characterizes fluids within the basin to constrain the sources and emergent behavior of paleofluid flow resulting in the iconic rock records. Major ion and isotopic (δ18Owater; δDwater; δ18OSO4; δ34SSO4; δ34SH2S; 87Sr/86Sr) signatures of formation waters were used to evaluate the distribution and sources of fluids and water-rock interactions by comparison with the rock record. There are two sources of salinity in basinal fluids: (1) diagenetically altered highly evaporated paleo-seawater-derived brines associated with the Pennsylvanian Paradox Formation evaporites; and (2) dissolution of evaporites by topographically driven meteoric circulation. Fresh to brackish groundwater in the shallow Cretaceous Burro Canyon Formation contains low Cu and high SO4 concentrations and shows oxidation of sulfides by meteoric water, while U concentrations are higher than within other formation waters. Deeper brines in the Pennsylvanian Honaker Trail Formation were derived from evaporated paleo-seawater mixed with meteoric water that oxidized sulfides and dissolved gypsum and have high 87Sr/86Sr indicating interaction with radiogenic siliciclastic minerals. Upward migration of reduced (hydrocarbon- and H2S-bearing) saline fluids from the Pennsylvanian Paradox Formation along faults likely bleached sandstones in shallower sediments and provided a reduced trap for later Cu and U deposition. The distribution of existing fluids in the Paradox Basin provides important constraints to understand the rock record over geological time. 
    more » « less
  7. null (Ed.)